For the doctors fighting COVID19, its been a long road without much in the medical armamentarium, whether in the way of effective treatment or vaccines. But basic science continues to labor long and hard, and the payoffs are in the offing.

The researchers report today in the journal Cell (https://www.cell.com/cell/fulltext/S0092-8674(20)31148-X) that Ab8 is highly effective in preventing and treating SARS-CoV-2 infection in mice and hamsters. Its tiny size not only increases its potential for diffusion in tissues to better neutralize the virus, but also makes it possible to administer the drug by alternative routes, including inhalation. Importantly, it does not bind to human cells—a good sign that it won’t have negative side-effects in people.
Canucks and Yankees have teamed to together to test the potential drug. Ab8 was evaluated in conjunction with scientists from the University of North Carolina at Chapel Hill (UNC) and University of Texas Medical Branch (UTMB) at Galveston, as well as the University of British Columbia and University of Saskatchewan.

The tiny antibody component is the variable, heavy chain (VH) domain of an immunoglobulin, a blood-borne anti-body. Identified by “mining” a motherlode of more than 100 billion potential candidates using the SARS-CoV-2 spike protein as a diving rod. Ab8 is created when the VH domain is fused to part of the immunoglobulin rear region, adding the immune functions of a full-size antibody without the molecular bulk.
Like the Pitt and UPMC vaccine candidate PittCoVacc that delivers an immunization through a spiky Band-Aid-like patch and overcomes the need for needles and refrigeration, the researchers are “thinking outside the box” when it comes to how Ab8 could be administered. Its small size might allow it to be given as an inhaled drug or intradermally, rather than intravenously through an IV drip, like most monoclonal antibodies currently in development.
Abound Bio, a newly formed UPMC-backed company, has licensed Ab8 for worldwide development.

Clinical trials are testing convalescent plasma—which contains antibodies from people who already had COVID-19—as a treatment for those battling the infection, but there isn’t enough plasma for those who might need it, and it isn’t proven to work.

Then a team at UTMB’s Center for Biodefense and Emerging Diseases and Galveston National Laboratory, led by Chien-Te Kent Tseng, Ph.D., tested Ab8 using live SARS-CoV-2 virus. At very low concentrations, Ab8 completely blocked the virus from entering cells. With those results in hand, Ralph Baric, Ph.D., and his UNC colleagues tested Ab8 at varying concentrations in mice using a modified version of SARS-CoV-2 . Even at the lowest dose, Ab8 decreased by 10-fold the amount of infectious virus in those mice compared to their untreated counterparts. Ab8 also was effective in treating and preventing SARS-CoV-2 infection in hamsters, as evaluated by Darryl Falzarano, Ph.D., and colleagues at the University of Saskatchewan. Sriram Subramaniam, Ph.D., and his colleagues at the University of British Columbia uncovered the unique way Ab8 neutralizes the virus so effectively by using sophisticated electron microscopic techniques.
“The COVID-19 pandemic is a global challenge facing humanity, but biomedical science and human ingenuity are likely to overcome it,” Mellors said. “We hope that the antibodies we have discovered will contribute to that triumph.”

No comments:
Post a Comment